메뉴 건너뛰기

OEQELAB, Seoul National University

NCRCAPAS, Seoul National University

제 목 Electronically Tunable Light Modulation with Graphene and Noble Metal Plasmonics

강 사 김세윤 박사(ICFO, Spain)

시 간 2017년 9월 15일(금) 오후 1시 30분

장 소 제1신공학관 301동 106호

 

Abstract

Graphene is a monolayer of carbon atoms constructing a two-dimensional honeycomb structure, and it has an excellent carrier mobility and a very high thermal conductivity. Recently, graphene based optical modulators and phase shifters have emerged as an area of intense research partly due to the ability of confined graphene plasmonic resonances to create a strong electrostatic response at THz to mid-IR frequencies. Additionally, the high confinement factor of graphene plasmons allow for the creation of highly miniaturize and active optical elements. Despite these capabilities, the poor radiative coupling to graphene plasmonic nanoresonators and low graphene carrier mobilities from imperfections in processed graphene samples have led to low light modulation depths in experimental attempts at creating tunable light modulation in graphene devices. In this talk, I will present three strategies to efficiently modulate mid-infrared light using graphene plasmonic nanoresonators coupled with noble metal plasmonic structures. Here, noble metal plasmonic structures are utilized to significantly enhance light-matter interactions in graphene, which creates larger light modulation depths in graphene plasmonic devices. First, experimental demonstration of perfect absorption in graphene will be discussed. The proposed devices show that perfection absorption in graphene is no longer limited by low graphene carrier mobility, which leads to 100% modulation efficiency in a reflection type light modulator. Next, a strategy for enhancing the tunability of transmission type light modulators will be discussed. To achieve this, resonant absorption in graphene plasmonic nanoresonators are exploited to suppress extraordinary optical transmission resonance in noble metal structures. Finally, I will present energy transport along graphene plasmonic nanoresonators, and a device design to modulate light in noble metal plasmonic waveguides.

 

Biography

Seyoon Kim received his B.S. degree and M.S. degree in electrical engineering from Seoul National University in 2005 and in 2007, respectively. He was a researcher at Agency for Defense Development from 2007 to 2008 and at Seoul National University from 2008 to 2010. After receiving his Ph. D. degree from California Institute of Technology in 2016, he will work at ICFO in Spain as a postdoctoral researcher. His research interests include graphene plasmonic light modulators and metasurfaces.

번호 제목 글쓴이 날짜 조회 수
3554 3D 소개 이병호 2001.07.04 13149
3553 안녕하십니까. 성우기 2001.07.06 13129
3552 3D image 송민호 2001.04.15 13111
3551 계약교수 채용 이병호 2001.06.15 13039
3550 그룹미팅 부방장 2001.07.11 12990
3549 그룹미팅 방장 2001.03.14 12896
3548 Re:오랜만에 들릅니다. 이병호 2001.07.14 12808
3547 과학기술 우수 논문상 이병호 2001.04.12 12802
3546 그룹미팅 방장 2001.04.03 12726
3545 연구실 업적 이병호 2001.06.03 12677
위로