메뉴 건너뛰기

OEQELAB, Seoul National University

NCRCAPAS, Seoul National University

세미나 안내 (11월 17일 11시)

이병호 2016.11.16 19:40 조회 수 : 524

제 목 Micro/Nano-Structured On-Chip Photonics:

All-Dielectric Metamaterials and Frequency Comb Generation

강 사 Ph.D Sangsik Kim (Purdue University)

시 간 2016년 11월 17일 (목요일) 오전 11시

장 소 제1신공학관 301동 1112호

 

Abstract:

Silicon photonics, or more generally, on-chip photonics, uses high-index and low-loss dielectrics to confine and guide the light, and it has revolutionized photonic research both fundamentally and technologically. Chip-scale light confinement increases the light-matter interactions, and recent advances in high-Q microresonators have led to advances in various nonlinear optical phenomena such as Kerr frequency combs. In addition, silicon photonics has been recognized as a next generation computing technology, and many industrial companies and governments are actively working to implement. The compatibility with well-established CMOS manufacturing systems makes silicon photonics promising; however, there are still challenges in this area with the large device sizes (compared to nanometer-scale transistors) due to waveguide cross-talks and bending losses. In this talk, I will present my two recent research projects: 1) frequency comb generation with dispersion-engineered concentric resonators and 2) photonic skin-depth engineering with all-dielectric metamaterials. First, concerning the frequency comb research, I will present a concentric resonator that can engineer and significantly modify the dispersion. Strong anomalous dispersion has been demonstrated in a thin silicon nitride film which was previously thought to have high normal dispersion, and consequently unsuitable for frequency comb generation. Together with a mode-selective, tapered coupling scheme, coherent frequency combs and soliton pulses have been generated. Next, I will present a method to engineer the skin-depth of photonic waveguides using all-dielectric metamaterials. A new class of waveguide scheme, i.e., extreme skin-depth (e-skid) waveguide is introduced, and I experimentally demonstrate e-skid waveguides that reduce the waveguide cross-talks and bending losses significantly, thus enabling dense integration of optical waveguides on a chip.

 

Biography:

Sangsik Kim is currently a postdoctoral researcher in the School of Electrical & Computer Engineering at Purdue University. He received his Ph.D. in Electrical and Computer Engineering from Purdue University in 2015. He also received an M.S. from Purdue University in 2014 and a B.S. from Seoul National University in 2008. His research interests lie in the broad area of micro/nano-photonics, which encompasses on-chip Kerr frequency combs, silicon/metamaterial and silicon/plasmonic hybrid photonic devices, passive/active silicon photonics, plasmonic metal nanostructures, and nonlinear/quantum photonics.

번호 제목 글쓴이 날짜 조회 수
3534 Citation report again 이병호 2001.07.21 12295
3533 공학교육혁신 토론회 발표자료 file 이병호 2021.04.20 12265
3532 69번에 포함되는 내용. 부속실 2001.06.15 12231
3531 Citation report 10 이병호 2006.10.29 12206
3530 회의 없음 이병호 2001.05.18 12080
3529 DHL 방장 2001.04.11 12072
3528 Virus 경보 !!! 양병춘 2001.05.11 12041
3527 김주환 청첩장입니다.(12월 26일 정오12시 역삼 GS타워) file 박길배 2010.12.08 12039
3526 Emmett Leith dies 이병호 2006.01.06 11947
3525 COOC 관련 교통비 안내 회계 2001.05.07 11912
위로